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Abstract. We show that the spin-orbit potential of the nuclear mean field destroys isoscalar superfluid
correlations in self-conjugate nuclei. Using group theory and boson mapping techniques on a Hamiltonian
including single particle splittings and a SOST (8) pairing interaction, we give analytical expressions for
the spin-orbit dependence of some N = Z properties such as the relative position of T = 0 and T = 1
states in odd-odd systems or double binding-energy differences of even-even nuclei.

PACS. 21.60.Cs Shell model – 21.60.Ev Collective models – 21.60.Fw Model based on group theory.

With the advent of radioactive beams an area of in-
tense research in nuclear physics concerns the structure
of exotic systems with roughly equal numbers of neutrons
and protons (N ≈ Z). These nuclei, close to the proton
stability line and of importance in astrophysical nucle-
osynthesis, might in addition develop a proton-neutron
superfluidity which is currently compared to pairing cor-
relations between like nucleons via shell-model calcula-
tions [1] or mean-field approximations [2]. In these stud-
ies, the main motivation is to identify what to expect in
a regime where isoscalar and isovector Cooper pairs can
coexist. In particular, there are many attempts to isolate
the specific role of T = 0 pairing on some features of the
N = Z line, such as binding-energy singularities or, as the
mass increases, the transition from a T = 0 to a T = 1
ground state in odd-odd nuclei.

Our study is also focussed on such pairing competition
but with particular attention to the shell structure of the
space where the superfluid correlations take place. More
precisely, it will be shown that the spin-orbit potential
disfavours proton-neutron pairs with parallels spins (T =
0 pairs). For this purpose, we consider a simple model
Hamiltonian H that incorporates single-particle energies
and different modes of pairing:

H =
∑

ρ

ερ

√
2(2j + 1)

[
a+

ρ ⊗ ãρ

]0,0

0,0
+ VP , (1)

where ρ = (n, l, j) denotes an orbit of a harmonic-
oscillator shell and ερ = ε

(0)
n,l − (Vso/2)[j(j + 1) − l(l +
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1) − (3/4)] is its energy in presence of a spin-orbit po-
tential −Vso l · s (Vso > 0). In addition, VP is the residual
SOST (8) pairing interaction [3] given by

VP = −gΩ(1 + x)
2

A+
0,1Ã0,1 − gΩ(1− x)

2
A+

1,0Ã1,0 (2)

with Ω =
∑

l(2l + 1) the orbital degeneracy of
the valence space and A+

S,MS ,T,MT
the collective pairs

(1/
√
2Ω)

∑
l

√
2l + 1 [a+

l,1/2,1/2 ⊗ a+
l,1/2,1/2]

L=0,S,T
ML=0,MS ,MT

.
Moreover, g is the overall strength of the pairing force
while x is a parameter that controls the relative impor-
tance of the T = 0 and T = 1 pairing. The interaction (2)
has been used in recent calculations concerning for exam-
ple the role of the isoscalar pairing channel in the Gamow-
Teller β decay [4] or in the study of α-like cluster struc-
tures along the N = Z line [5]. In addition, an analysis of
realistic G-matrix interactions [6] has also shown that its
pairing terms are only characterized by an L = 0 character
given precisely by eq. (2).

The solution of the eigenvalue problem associated with
the full Hamiltonian (1) in a large space, like the fp shell,
requires substantial numerical effort that can be avoided
via boson mapping techniques [7]. The main idea of these
approaches is to map bi-fermion operators onto a boson
algebra in such a way as to preserve the physics of the
original fermion problem. For example, one mapping is
given by the non Hermitian Dyson expansion [8]:

a+
n1
a+

n2
→

∑
ω

Y ω
n1,n2

b+ω

−
∑

ω1,ω2,ω3

Y ω1
n1,n3

Y ω2
n2,n4

Y ω3
n3,n4

b+ω1
b+ω2

bω3 , (3a)
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an1an2 →
∑
ω

Y ω
n2,n1

bω, (3b)

a+
n1
an2 →

∑
ω1,ω2

Y ω1
n1,n3

Y ω2
n2,n3

b+ω1
bω2 , (3c)

where b+ω denotes boson operators associated with collec-
tive fermion pairs A+

ω = (1/2)
∑

n1,n2
Y ω

n1,n2
a+

n1
a+

n2
. Note

that these boson images make use of all the two-fermion
degrees of freedom and as a consequence the diagonaliza-
tion does not become easier in the boson space. However,
matters simplify if the Hamiltonian can be expressed only
in terms of collective pairs A+

ω that are algebraically closed
([[A+

ω1
, A+

ω2
], A+

ω3
] =

∑
ω4

Γω4
ω1,ω2,ω3

A+
ω4
). In this case, an

exact boson reproduction of the collective eigenspectrum
can be obtained using a Dyson expansion followed by the
elimination of all terms that contain bosons other than
b+ω (this is the so-called “skeletonisation theorem” [9]).
In our case, the SOST (8) dynamical invariance of VP

guarantees a perfect decoupling of all states built from
A+

S,MS ,T,MT
[(S, T ) = (0, 1) or (1, 0)] operators. We can

thus construct a perfect realization (VP )B of the pairing
interaction (2) in terms of a U (6) algebra formed by J = 0,
T = 1 bosons (s+) and J = 1, T = 0 bosons (p+) asso-
ciated with the isovector A+

S=0,MS=0,T=1,MT =µ and the
isoscalar A+

S=1,MS=ν,T=0,MT =0 pairs, respectively. After a
näıve Hermitization by an arithmetic mean of (VP )B and
(VP )B, one obtains [5]

(VP )Herm.
B = −11g

4
n̂+

g

4
n̂(n̂+ 5)

−
[
gΩ(1 + x)

2
+
3gx
2

]
n̂s +

gx

4
n̂s(n̂s + 3)

−
[
gΩ(1− x)

2
− 3gx

2

]
n̂P − gx

4
n̂P (n̂P + 3)

+
g

4
C2[SU (4)] +

gx

4
(
T̂ 2 − Ŝ2

)
, (4)

where n̂ is the total number of bosons, n̂s and n̂p the
number operators of s and p bosons and C2[SU (4)] the
quadratic invariant associated to the Wigner subgroup
SU (4) of the boson U (6) group.

With non-zero single particle splittings, this boson
analysis is not so simple. First, energetically favoured
pairs are no longer given by A+

S,MS ,T,MT
and it becomes

necessary to bosonize the lowest eigenstates of the two-
particle space. For relatively small values of the spin-orbit
coupling, these eigenstates carry the quantum numbers
(J, T ) = (0, 1) and (1, 0) and will thus be associated with
new s+ and p+ bosons. In addition, such pairs do not ver-
ify the closure hypothesis and so the simple truncation of
the Dyson expansion to (s, p) bosons is not exact. How-
ever, it remains an excellent approximation for the lowest
J = 0, T = 0 level in even-even N = Z nuclei and for
the first J = 0, T = 1 or J = 1, T = 0 state in odd-odd
self-conjugate systems. This is shown in table 1 where a
comparison is made with the exact fermionic results in the
sd space. All the results concern N = Z nuclei with a gap

Table 1. Comparison between the first shell model levels as-
sociated with the Hamiltonian (1) in the sd shell and those
obtained in its (s, p) boson realization.

Number n of
J T

Shell model (s, p) boson
bosons energy model energy

1
0 1 −1.061609 −1.061609
1 0 −0.048448 −0.048448

2 0 0 −2.46956 −2.470745
3

0 1 −2.88023 −2.888593
1 0 −1.84713 −1.836192

4 0 0 −3.64679 −3.652977
5

0 1 −3.37266 −3.426017
1 0 −2.33107 −2.362323

6 0 0 −3.4779 −3.545329

ε
(0)
1d − ε

(0)
2s = 1MeV, a spin-orbit strength Vso = 2MeV

and an asymmetry x = 0.8 between T = 0 and T = 1
pairing.

To see the influence of the shell organization on the su-
perfluid structure of heavy N = Z nuclei, the (s, p) boson
realization of the Hamiltonian (1) has been systematically
studied in the fp shell for different values of the spin-orbit
strength Vso and of the asymmetry x between the two pair-
ing modes. In all calculations we use ε(0)2p − ε

(0)
1f = 1MeV

and a total pairing strength g = 0.7MeV close to the value
deduced from the KB3 interaction by Dufour & Zuker [6].
As a first result, the energy difference between the lowest
J = 0, T = 1 and J = 1, T = 0 states in N = Z odd-odd
nuclei is shown in fig. 1. If isoscalar superfluid correla-
tions are dominant (x < 0) or if both pairings are of equal
strength (x = 0), the J = 0, T = 1 level is favoured by
the spin-orbit coupling and progressively more so as the
particle number increases. On the other side, if isovector
pairing is more important (x > 0), the spin-orbit coupling
has a negligible effect on the relative position of T = 0 and
T = 1 states in odd-odd N = Z nuclei. These conclusions
are also confirmed by the barchart representations of fig. 2
concerning the pair structure of the lowest J = 0, T = 1
and J = 1, T = 0 states in 50Mn(N = Z = 25). Again, it
appears clearly that the number of proton-neutron pairs
with parallels spins decreases when a spin-orbit term is in-
troduced. In fact, a similar result holds also for the J = 0,
T = 0 ground state of even-even N = Z systems.

To have a better understanding of the effects induced
by the spin-orbit mean-field coupling on nuclear superfluid
properties at low isospin, an analytical study can be done
assuming that the influence of the l · s potential can be
treated in a perturbative way. In this case, assuming that
s+ and p+ bosons always correspond to the SOST (8) pairs
A+

S,MS ,T,MT
, the boson interaction remains given by the

two-body terms of (4) while the one-body part becomes
ε0,1n̂s + ε1,0n̂p with single energies εS,T obtained from
perturbation theory on unperturbed states A+

S,MS ,T,MT
.

Up to second order in Vso, it can be shown that

ε0,1 = −gΩ(1 + x)
2

− 8αV 2
so

gΩ(1 + x)
, α =

∑
l

l(l + 1) (5)
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Fig. 1. Evolution of the energy difference ∆E = E(J = 0, T =
1)−E(J = 1, T = 0) in odd-odd N = Z nuclei of the fp shell.
Vso is the spin-orbit strength and x the asymmetry between
the two pairing modes.

and

ε1,0 = −gΩ(1− x)
2

− 8βV 2
so

3gΩ2(1− x)
,

β =
∑

l

l(l + 1)(4l2 + 4l − 1)2
(2l + 1)3

. (6)

If, finally, the two pairing channels are assumed to have
nearly the same intensity, we obtain a boson Hamiltonian
HB that separates into an SU (4) invariant part H0 and an
Hermitian perturbation V depending on the superfluidity
asymmetry parameter x and on the strength Vso of the
spin-orbit coupling:

HB = H0 + V (7)
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Fig. 2. Pair structure of the first (J = 1, T = 0) and (J = 0,
T = 1) states in 50Mn(N = Z = 25) as a function of the
spin-orbit strength and the relative intensity of the two pairing
modes.

with

H0 = −g

(
11
4
+

Ω

2

)
n̂+

g

4
n̂(n̂+ 5) +

g

4
C2[SU (4)] (8)

and:

V =
gx(Ω + 3)

2
(n̂p − n̂s) +

gx

4
n̂s(n̂s + 3)

−gx

4
n̂p(n̂p + 3)− 8αV 2

so(1− x)
gΩ

n̂s

−8βV
2
so(1 + x)
3gΩ2

n̂p. (9)

Using the results given in [5] concerning the expansion
of SU (4) states on a basis that preserves the numbers
(ns, np), it then becomes straightforward to obtain the
expectation value of V in the eigenstates of H0 of interest.
For example, in an odd-odd N = Z nucleus, one finds that
the difference ∆E between the lowest J = 0, T = 1 and
J = 1, T = 0 is, in first order, given by

∆E = E(J = 0, T = 1)− E(J = 1, T = 0)

= gx− gx

4
(n+ 3)(Ω + 3) +

gx

8
(n+ 3)2

−2V
2
so

gΩ
(n+ 3)

[(
α− β

3Ω

)
− x

(
α+

β

3Ω

)]
. (10)
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This expression explains the parabolic behavior of ∆E
versus the number n of bosons that was observed in the
numerical results of fig. 1. It also shows how the spin-orbit
coupling acts to fix the isospin of the ground state in odd-
odd N = Z structures: with equal T = 0 and T = 1
pairing, (x = 0) eq. (10) becomes

∆E = −2V
2
so(n+ 3)
gΩ

(
α− β

3Ω

)
< 0 since α >

β

3Ω
(11)

and as a consequence, we find that a small spin-orbit po-
tential always breaks the SU (4) symmetry, where T = 0
and T = 1 levels would be degenerate, in favour of the
isovector state and with a linear mass dependence.

Finally, the boson Hamiltonian (7) also allows to give
a new insight in the problem of mass anomalies along the
N = Z line. In particular, such singularities appear in the
double binding energy differences [10] defined, for exam-
ple, in even-even nuclei by [11]:

δVnp(N,Z) =
1
4
[
B(N,Z)−B(N,Z − 2)

−B(N − 2, Z) +B(N − 2, Z − 2)], (12)

where B is the binding energy. The experimental values
of this indicator are reproduced in fig. 3 where one ob-
serves an enhancement of δVnp at N = Z and which can
be interpretated as a remnant of SU (4) symmetry [10].
Our purpose is here to look at the evolution of δVnp in
the context of the boson Hamiltonian (7) treated by per-
turbation theory. In first order, the ground-state energy
B(n, T ) of an even-even nucleus of n bosons and isospin
T is found to be

B(n, T )=−g

(
11
4
+

Ω

2

)
n+

g

4
n(n+ 5) +

g

4
T (T + 4)

−4V
2
so

gΩ

[
T (n+ 3)
T + 3

(
α− β

3Ω

)
+n

(
α+

β

3Ω

)]
, (13)

where only the case of equal T = 0 and T = 1 pairing
has been considered. For the double binding energy differ-
ences, one obtains

δVnp(n, T �= 0)=−6V
2
so

gΩ

n+ 2
(T + 2)(T + 3)(T + 4)

(
α− β

3Ω

)

(N �= Z nuclei), (14)

δVnp(n, T = 0) = −3g
8
+
2V 2

so(n+ 3)
gΩ

(
α− β

3Ω

)

(N = Z nuclei). (15)

We thus obtain a singularity at N = Z reduced by the
spin-orbit coupling and which behaves linearly in an har-
monic oscillator shell with a smaller slope as larger spaces
are considered. All these points are observed to a good
extent in the experimental values of δVnp (fig. 3). This
shows that many features of δVnp are explained in terms
of a SU (4) breaking induced by the spin-orbit potential.

In conclusion, we have studied in this letter the effects
of a spin-orbit coupling on the competition between the

Fig. 3. Experimental values of the double binding energy dif-
ference δVnp for all known even-even nuclei with atomic num-
ber Z < 50.

T = 0 and T = 1 superfluidity in exotic nuclear systems
at low isospin. Using a schematic Hamiltonian solved by
a skeletonized Dyson boson expansion, a clear destruction
by the spin-orbit potential of isoscalar proton-neutron cor-
relations inN = Z nuclei has been found. Its consequences
can qualitatively explain, for the first time, the observed
change from T = 0 to T = 1 in the ground state isospin of
odd-odd self-conjugate nuclei. They also shed light on the
deviations from SU (4) symmetry of the mass singularities
in N = Z systems.

We wish to thank P. Van Isacker and S. Pittel for discussions
on various aspects of this work.
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